- TOP
- Zairyo-to-Kankyo
- Vol. 61 (2012), No. 6
Zairyo-to-Kankyo Vol. 61 (2012), No. 6
Backnumber
-
Vol. 74 (2025)
-
Vol. 73 (2024)
-
Vol. 72 (2023)
-
Vol. 71 (2022)
-
Vol. 70 (2021)
-
Vol. 69 (2020)
-
Vol. 68 (2019)
-
Vol. 67 (2018)
-
Vol. 66 (2017)
-
Vol. 65 (2016)
-
Vol. 64 (2015)
-
Vol. 63 (2014)
-
Vol. 62 (2013)
-
Vol. 61 (2012)
-
Vol. 60 (2011)
-
Vol. 59 (2010)
-
Vol. 58 (2009)
-
Vol. 57 (2008)
-
Vol. 56 (2007)
-
Vol. 55 (2006)
-
Vol. 54 (2005)
-
Vol. 53 (2004)
-
Vol. 52 (2003)
-
Vol. 51 (2002)
-
Vol. 50 (2001)
-
Vol. 49 (2000)
-
Vol. 48 (1999)
-
Vol. 47 (1998)
-
Vol. 46 (1997)
-
Vol. 45 (1996)
-
Vol. 44 (1995)
-
Vol. 43 (1994)
-
Vol. 42 (1993)
-
Vol. 41 (1992)
-
Vol. 40 (1991)
Zairyo-to-Kankyo Vol. 61 (2012), No. 6
Hydrogen Absorption Behavior of Steel Bar for Prestressed Concrete in a Solution of Ammonium Thiocyanate
Tomoki Doshida, Kenichi Takai, Mikiyuki Ichiba
pp. 249-256
DOI:
10.3323/jcorr.61.249Abstract
A solution of ammonium thiocyanate is used in the FIP (Fédération International de la Précontrainte) test as a hydrogen charging method. Though this method is comparatively simple, fracture time in the FIP test and hydrogen content often differ among various testing institutes. However, the detailed hydrogen absorption behavior in the solution is still not clear. In this context, the effects of existing states of hydrogen, oxide film on the specimen surface, specific solution volume to specimen surface area, immersion time and solution temperature on the hydrogen absorption behavior of a steel bar for reinforcing prestressed concrete were investigated by immersing it in the solution. The amount of absorbed hydrogen increased with immersion time, reached its maximum, and then decreased with increasing immersion time. A main factor of the decrease in the amount of absorbed hydrogen was corrosion products, including Fe, O and S, formed on the specimen surface, since the amount of absorbed hydrogen increased again as a result of merely polishing the surface. This indicates that corrosion products formed on immersing specimens in a solution of ammonium thiocyanate strongly affect hydrogen absorption behavior. Whereas, variation of the solution, such as increase in pH, during immersion also affects slightly hydrogen absorption behavior.
Readers Who Read This Article Also Read
Tetsu-to-Hagané Vol.98(2012), No.5
Article Access Ranking
28 Jan. (Last 30 Days)
-
Perspectives on the Promising Pathways to Zero Carbon Emissions in the Steel Industry toward 2050
ISIJ International Vol.65(2025), No.2
-
New Electromagnetic Flow Control System for Optimization of Molten Steel Flow in Continuous Casting Mold
Tetsu-to-Hagané Vol.112(2026), No.1
-
Delayed Fracture Mechanism of 1700 MPa-Class Quenched and Tempered Bolt under Atmospheric Corrosion Environment
Tetsu-to-Hagané Advance Publication
-
Processability and Microstructural Morphology of γ-Fe/Fe2Nb Two-Phase Eutectic Alloy Manufactured by Laser Powder Bed Fusion
Tetsu-to-Hagané Vol.112(2026), No.1
-
Effect of B on Surface Oxidation Behavior and Phosphatability of Si–Mn-added Cold-Rolled Steel Sheets
ISIJ International Vol.66(2026), No.1
-
Morphology Control of Metallic Iron Formed by Hydrogen Reduction of Iron Oxide
ISIJ International Advance Publication
-
Effect of Cu Addition on Mechanical Properties of Tempered Martensitic Steels: Retardation of Fatigue Crack Initiation by Cu Precipitation
ISIJ International Advance Publication
-
Reducibility of iron ore sinter analogues under hydrogen-enriched and conventional blast furnace gas compositions
ISIJ International Advance Publication
-
Preface to the Special Issue on "Effects of Cu and Other Tramp Elements on Steel Properties"
ISIJ International Vol.37(1997), No.3
-
Connecting the Dots
Zairyo-to-Kankyo Vol.74(2025), No.11
You can use this feature after you logged into the site.
Please click the button below.